Хроматография. Лекция 5. Газовая хроматография

Газовая хроматография (ГХ) – метод разделения летучих соединений, в котором подвижной фазой является газ.

  • ПФ – газ носитель (инертный газ: гелий)
  • НФ – твердый сорбент с большой удельной поверхностью
  • только для аналитических целей и только в колонке

Разновидности газовой хроматографии

  1. газо-твердофазная (газо-адсорбционная)
  2. газо-жидкостная

Требования к веществам для газовой хроматографии

  • летучесть (или предварительный перевод в летучие производные)
  • инертность
  • термическая устойчивость (до 350)
  • молярная масса до 400

Достоинства газовой хроматографии

  • один из наиболее распространенных методов анализа
  • неразрушающий метод анализа
  • высокая разрешающая способность
  • низкий предел обнаружения
  • высокая чувствительность
  • экспрессность
  • точность
  • совместимость с большим типом детекторов

Газо-адсорбционная хроматография

Газо-адсорбционная хроматография (ГАХ) – адсорбционная хроматография.
Разделение в газо-адсорбционной хроматографии достигается за счет различной адсорбции на НФ.

Неподвижная фаза

НФ определяет селективность.

Типы НФ

  1. Твердые адсорбенты
  2. Жидкости на твердом носителе
  3. Химически связанные жидкие фазы

Особые требования к адсорбентам в ГАХ

  • высокая удельная поверхность
  • отсутствие каталитической активности
  • химическая инертность
  • малая летучесть
  • термическая устойчивость
  • физическая сорбция хроматографируемых соединений
  • однородность структуры

Применение газо-адсорбционной хроматографии

  • анализ газов
  • анализ низкомолекулярных веществ (не должные содержать активных функциональных групп)
  • определение воды в неорганических и органических материалах, анализ
  • анализ летучих гидридов металлов

Преимущества и недостатки газо-адсорбционной хроматографии

Преимущества:

  • большое время жизни колонок
  • возможность разделения стереоизомеров, неорганических газов и других смесей соединений, которые проблематично хроматографировать другими методами

Недостатки:

  • сильное удерживание полярных и высококипящих веществ ⇒ большое время анализа, низкие, широкие пики
  • возможность протекания каталитических процессов на поверхности сорбента
  • сложность получения однородных сорбентов ⇒ плохая воспроизводимость времен удерживания, асимметричность хроматографических пиков

Газо-жидкостная хроматография

ГЖХ – распределительная хроматография.
НФ – высокомолекулярная жидкость, нанесенная на твердый носитель.
Разделение достигается за счет различной растворимости компонентов образца в ПФ и НФ.
Наиболее распространенный метод аналитической ГХ.

Решающий фактор – селективная абсорбция компонентов смеси неподвижной жидкой фазой (абсорбентом).
Абсорбция сводится к избирательному растворению газа или пара хроматографируемого вещества пленкой жидкости (НФ).
Насадочная колонка, либо по внутренней поверхности тонкого капилляра (капиллярная колонка).

Неподвижная фаза

Основная характеристикатемпературные пределы применения (минимум и максимум).

Требования к жидкой фазе

  1. должна хорошо растворять компоненты смеси
  2. инертность
  3. малая летучесть (чтобы не испарялась при рабочей температуре колонки)
  4. термическая устойчивость
  5. высокая селективность
  6. небольшая вязкость (иначе замедляется процесс диффузии)
  7. способность образовывать при нанесении на носитель равномерную пленку, прочно с ним связанную

Вещества, используемые в качестве жидкой фазы:

  • Неполярные парафины (сквалан)
  • вазелиновое масло, апиезоны
  • кремнийорганические полимеры
  • карборансиликоновые жидкие фазы (самые термостабильные)
  • умеренно полярные жидкости, полярные (гидроксиламины, полиэтиленгликоли (карбоваксы))

Носители НЖФ

Применяются те же сорбенты, используемые в других видах хроматографии.
Главное назначение удержание пленки НЖФ.

Требования к НЖФ:

  • умеренная удельная поверхность
  • прочность
  • изопористость
  • низкая пористость, неглубокие поры – избежать застойных явлений, чтобы вещество не задерживалось
  • химическая инертность (минимизировать адсорбцию на границе газ-носитель)
  • термическая устойчивость

Химически связанные НФ

Получают химической модификацией поверхности твердого носителя (обычно силикагеля) для обеспечения более хорошей связи, для предотвращения испарения жидкости при высокой температуре, повышения термостойкости.

Преимущества:

  • возможность нанести более тонкий и равномерный слой на носитель (по сравнению с жидкой фазой)
  • высокая эффективность
  • высокая термическая устойчивость
  • высокая устойчивость к растворителям (предотвращается смыв НФ с носителя, возможность регенерации)

Подвижная фаза

Газы-носители: Ar, He, H2, N2

Параметры, на которые влияет газ-носитель:

  • эффективность системы – низкомолекулярные газы (He, H2) имеют большие коэффициенты диффузии, поэтому обеспечивают эффективное и быстрое разделение
  • устойчивость ПФ и НФ – не инертные газы (H2, O2) способны взаимодействовать с веществами и материалами деталей хроматографа
  • сигнал детектора – некоторые детекторы требуют использования специальных газов

Газ-носитель не оказывает влияния на селективность (удерживание).

Основная характеристикалинейная скорость потока газа-носителя. Измеряется на выходе из колонки (мл/мин).

Газовый хроматограф

Принципиальная схема газового хроматографа1

Принципиальная схема газового хроматографа

  1. баллон с газом-носителем
  2. блок подготовки газа с регулятором скорости потока
  3. инжектор (испаритель)
  4. хроматографическая колонка с термостатом
  5. детектор
  6. регистрирующее устройство

Промышленные хроматографы

  1. Автоматические – контроль производственных процессов: производство легких бензинов, синтетического каучука, полимеров, аммиака, формалина (контроль за реакцией)
  2. Для препаративных целей

Блок подготовки газа-носителя

Разная оптимальная скорость потока для разных газов, обусловленная разницей в коэффициентах диффузии.

Инжектор

  • Инжектор обеспечивает точный, количественный отбор пробы.
  • Газовые пробы вводят шприцами или с помощью петли постоянного объема, жидкие вводят инъекционными шприцами в непрерывно движущийся поток газа-носителя.
  • Температура инжектора выдерживается на 20-50 выше, чем в колонке.
  • Инжектор может быть оборудован делителем потока для обеспечения дополнительного дозирования.

Колонки

Насадочные (набивные) – заполненные неподвижной фазой колонки из стекла или стали в форме спирали (1-5 м, диаметр 5-10 мм).

  • высокая емкость

Капиллярные – кварцевые капилляры (длина 10-100 м, внутренний диаметр 100-500 мкм), на стенки которого нанесена жидкая фаза.

  • высокая эффективность
  • носитель (насадка) не используется

Предколонки (форколонки)

  • ставятся перед основной колонкой
  • меньше основной колонки по размеру

Задачи:

  1. концентрирование пробы из большого объема
  2. для защиты и предохранения основной колонки от гидроудара (из-за перепада давления)
  3. фильтрация от нелетучих примесей

Температура колонки

Факторы, определяющие температуру:

  • летучесть пробы
  • рабочий диапазоном температур колонки

Выбор температуры колонки сводится к достижению оптимального соотношения между скоростью хроматографического анализа, разрешающей способностью и чувствительностью.

Градиентное хроматографирование — изменение температуры (ступенчатое или линейное) в процессе хроматографии. Разделение сложной смеси компонентов путем варьирования температуры.

Градиентное изменение температуры является одним из способов решения основной проблемы хроматографии – уширение пика в процессе контакта с сорбентом. При изотерме пики уширяются со временем, при градиентном хроматографировании пики одинаково узкие.

Детекторы

Задача: регистрирование изменения физико-химических показателей.

Выбор детектора определяется природой хроматографируемых соединений, целями хроматографии, концентрацией веществ.

Классификация детекторов в газовой хроматографии

По виду зависимости сигнала детектора от скорости подвижной фазы
  1. Интегральные (практически не используюся)
  2. Дифференциальные:

1) концентрационные – сигнал пропорционален концентрации, высота пика не меняется, площадь меняется

2) потоковые – сигнал пропорционален количеству вещества, высота пика меняется, площадь не меняется

Зависимость сигнала детектора от скорости потока ПФ

Диапазон линейности детектора – важная характеристика детектора, диапазон, в котором зависимость сигнала детектора от скорости потока ПФ остается лиейной.

По деструктивной способности
  1. Деструктивные – в процессе детектирования вещество разрушается, не подходят для препаративной хроматографии
  2. Недеструктивные
По чувствительности
  1. с низкой чувствительностью (детектор по теплопроводности, детектор сечения ионизации)
  2. высокочувствительные (ионизационные детекторы)

Иногда используют последовательно несколько детекторов для увеличения чувствительности.

По селективности
  1. Универсальные
  2. Селективные (более чувствительные)

Некоторые виды детекторов газовой хроматографии

Детектор Принцип работы Преимущества Недостатки

Детектор по теплопроводности (катарометр)

основан на изменении сопротивления нагретой проволоки (W, Pt, Ni)

мост Уинстона, 4 спирали с высоким термическим сопротивлением

чем больше теплопроводность газа-носителя, тем больше чувствительность (очень высокую теплопроводность имеет водород, но его не используют ввиду взрывоопасности, а используют гелий)

  • недеструктивный
  • универсальный
  • позволяет проводить анализ газов
  • совместим с другими детекторами
  • требуется газ высокой степени очистки – 99,999% (А)
  • чувствителен к изменению скорости газа носителя (поэтому устанавливают постоянную скорость)

Для повышения чувствительности катарометра перед ним устанавливают конвектор.

Углекислотный конвектор — органические вещества сжигаются на оксиде меди II, и сигнал становится пропорционален количеству вещества и количеству атомов углерода.
Водородный конвектор – газом носителем выступает азот, органические вещества переводят в воду.
Метановый конвектор – газом носителем выступает водород.

Пламенно-ионизационный детектор

изменение сопротивления при сжигании образца

деструктивный метод – водородное пламя сжигает вещество , образуются ионы, сила тока увеличивается, сопротивление уменьшается

чувствительность пропорциональна числу атомов углерода (ацил катионы, CHO+)

  • универсальный
  • газ-носитель не дает сигнал
  • низкий предел обнаружения
  • линейный динамический диапазон шире, чем у катарометра
  • чувствителен к изменению скорости газа-носителя
  • нельзя определять неорганические газы

Термоионный детектор

стержень из соли щелочного металла

эмиссия увеличивает ток

  • высокочувствителен к соединения содержащими анионобразующие элементы (серу, мышьяк, фосфор, кислород, галогены)
  • анализ гербицидов, пестицидов, удобрений
 

Электронно-захватный детектор (ECD)

захват медленных электронов электроотрицательными атомами в молекуле – достраивание электронной оболочки элементов до октета убывание ионного тока

  • низкий предел обнаружения
  • анализ галоген-, серо-, нитросодержащих соединений
  • анализ экотоксикантов, лекарственных средств, взрывчатых веществ

нечувствителен к углеводородам, спиртам

Гелиевый и аргоновый ионизационные детекторы

радиоактивный источник (тритий, стронций 90)

определение газов

 

Термохимический детектор

каталитическое окисление вещества на поверхности платиновой нити

измерение тепового эффекта сжигания

используется воздух

выделябщееся тепло повышает температуру нити (по аналогии с ПИД)

для горючих веществ

  • отравление катаизатора – необходимо регулярно калибровать
  • трудно предсказуемая зависимость величины сигнала от степени окисления атомов углерода

Масс-селективный (масс-спектрометрический)

радиоактивный

для соединений, содержащих галогены, нитро-группы